If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2-13w=0
a = 2; b = -13; c = 0;
Δ = b2-4ac
Δ = -132-4·2·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-13}{2*2}=\frac{0}{4} =0 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+13}{2*2}=\frac{26}{4} =6+1/2 $
| 12t+5t-2t+5t=20 | | 5(2x-3)-5=5(x-2)+30 | | 121=22-11(m) | | Y=6/1x+6 | | X+4-10x=-32 | | p^2+19p+10=0 | | 100/50=n/294 | | 96=2(6+6k) | | 4c=6.16 | | 100x^2+120x+36=9 | | 12x+144=1.5x-160 | | 3(x-1)+8(x-3)=6x+7-5 | | 7g+4;g=5 | | 100/50=294/n | | 7=h/14 | | 5n2-3n-9700=0 | | 3x2x+4x+x=360 | | 83/5=4x+53/5 | | 1/2x+5-(5/2x-6)=3/2 | | 32=2m-6+3m | | 8x=2x+33 | | 8(y+2)+3=(3y-4)-4 | | 6p/6=-90 | | 5(x-6)^2=320 | | k/3-5=34k= | | 11.8=7.25+n | | -5(v-7)=7(v-5)+2v | | 9=w/5 | | -179=7(6x+4)+3 | | 16/58=30/x | | 5^2x=11 | | 9-2(x+4)-6x-5=24-8x |